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Abstract

A Reissner—Mindlin theory for composite laminates without invoking ad hoc kinematic assumptions is constructed
using the variational-asymptotic method. Instead of assuming a priori the distribution of three-dimensional displace-
ments in terms of two-dimensional plate displacements as what is usually done in typical plate theories, an exact
intrinsic formulation has been achieved by introducing unknown three-dimensional warping functions. Then the var-
iational-asymptotic method is applied to systematically decouple the original three-dimensional problem into a one-
dimensional through-the-thickness analysis and a two-dimensional plate analysis. The resulting theory is an equivalent
single-layer Reissner—Mindlin theory with an excellent accuracy comparable to that of higher-order, layer-wise theories.
The present work is extended from the previous theory developed by the writer and his co-workers with several sizable
contributions: (a) six more constants (33 in total) are introduced to allow maximum freedom to transform the asymp-
totically correct energy into a Reissner—Mindlin model; (b) the semi-definite programming technique is used to seek the
optimum Reissner—-Mindlin model. Furthermore, it is proved the first time that the recovered three-dimensional quan-
tities exactly satisfy the continuity conditions on the interface between different layers and traction boundary conditions
on the bottom and top surfaces. It is also shown that two of the equilibrium equations of three-dimensional elasticity
can be satisfied asymptotically, and the third one can be satisfied approximately so that the difference between the Reiss-
ner—Mindlin model and the second-order asymptotical model can be minimized. Numerical examples are presented to
compare with the exact solution as well as the classical lamination theory and the first-order shear-deformation theory,
demonstrating that the present theory has an excellent agreement with the exact solution.
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1. Introduction

Recent decades have seen many new theories on composite laminates in the literature accompanying the
increased application of composite materials in practice. However, engineers are reluctant to accept them
with confidence due to two main reasons: (1) most of the theories are constructed for specific problems
without sufficient generalization (both the plate itself and various analyses associated with it) and (2) some
models with sufficient accuracy are too complicated and computationally inefficient to be used for design
purposes. Simple yet efficient, accurate, and generalized analysis tools are still in need to provide high-fidel-
ity prediction, shorten the design period, and reduce the cost of composite structures.

Many structures made with composite materials have one dimension much smaller than the other two
and can be modelled as plates. Composite plate models are generally derived from three-dimensional (3-
D) anisotropic elasticity theory, making use of the thinness of the plate. The simplest composite plate
theory is the classical lamination theory (CLT), which is based on the Kirchhoff hypothesis. It is well
known, however, that composite plates do not have to be very thick in order for this theory to yield extre-
mely poor results compared to the exact 3-D solution. Although it is plausible to take into account the
smallness of the thickness of such structures, construction of an accurate two-dimensional (2-D) model
for a 3-D body still introduces a lot of challenges. There have been many attempts to rationally improve
upon CLT such as those reviewed in Noor and Burton (1989), Noor and Burton (1990), and Noor and
Malik (2000). Most of the models, for example Reddy (1984), Touratier (1991), DiSciuva (1985), and
Cho and Averill (2000), are based on ad hoc kinematic assumptions, such as an a priori distribution of dis-
placement through the thickness.

Mathematically, the approximation in the process of constructing a plate theory stems from elimination
of the thickness coordinate from the independent variables of the governing equations, a dimensional
reduction process. This sort of approximation is inevitable if one wants to take advantage of the smallness
of the thickness to simplify the analysis. However, other approximations that are not absolutely necessary
should be avoided. For example, for small-strain analysis of plates, it is reasonable to assume that the thick-
ness, £, is small compared to the wavelength of deformation of the reference plane, /. However, it is unnec-
essary to assume a priori some ad hoc displacement field, although that is the way most plate theories are
constructed.

Recently, a mathematical approach, variational-asymptotic method (VAM) introduced by Berdichevsky
(1979), has been adopted to construct accurate models for composite laminates (Yu et al., 2002, 2003; Yu
and Hodges, 2004). In this approach, we first cast the original 3-D elasticity problem in an intrinsic form so
that the theory can accommodate arbitrarily large displacement and global rotation, subject only to the
strain being small (see Danielson, 1991). Then, VAM is employed to reduce the dimensionality systemati-
cally in terms of the smallness of ///. VAM can rigorously split the original nonlinear 3-D elasticity problem
into a linear, one-dimensional (1-D), through-the-thickness analysis and a nonlinear, 2-D, plate analysis.
The through-the-thickness analysis produces a 2-D constitutive law to be used in the plate analysis, along
with recovery relations that yield the 3-D displacement, strain, and stress fields using results obtained from
the solution of the 2-D plate analysis.

To avoid the overwhelming complexity of the plate model constructed directly using asymptotic meth-
ods, one can transfer this model into a simple engineering model, such as the Reissner—Mindlin model. To
minimize the loss of accuracy during the transformation, we should allow the maximum freedom to seek
the optimal engineering model, which is achieved in this paper by introducing six more constants than
the previous work in Yu et al. (2002). Another contribution of the present work is to use the semi-definite
programming (see Toh et al., 1999) technique to perform the optimization, which is more mathematically
sound than the least squares technique for our present purpose. Moreover, it is proved the first time that the
reduced model constructed this way automatically satisfies the continuity conditions, including both the
displacements and stresses, on the interface between different layers and traction boundary conditions
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on the bottom and top surfaces. It is also shown that the first two of the equilibrium equations of 3-D elas-
ticity can be satisfied asymptotically, and the third one can be satisfied approximately in a sense of minimal
energy loss. Several numerical examples are presented to validate the present theory against available exact
solutions and other approximate models.

2. Three-dimensional formulation

A point in the plate can be described by its Cartesian coordinates x; (see Fig. 1), where x, are two ortho-
gonal lines in the reference plane and x3 is the normal coordinate. (Here and throughout the paper, Greek
indices assume values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated indices are summed over
their range except where explicitly indicated.) Letting b; denote the unit vector along x; for the initial con-
figuration, one can then describe the position of any material point in the plate by its position vector r from
a fixed point O

F(x1,Xx2,X3) = r(x1,X2) + x3b3 (1)

where r is the position vector from O to the point located by x, on the reference plane. If the mid-plane is
chosen as the reference plane, we have
(F(x1,x2,%3)) = hr(xy,x2) (2)

where the angle-brackets denote the definite integral through the thickness of the plate and will be used
throughout the paper.

When the plate deforms, the particle that had position vector r in the undeformed state now has position
vector R in the deformed plate. The latter can be uniquely determined by the deformation of the 3-D body.
We introduce another triad B; for the deformed configuration so that

B, =Cyb; Cj=B;-b; (3)

Undeformed State Deformed State
W, (X, %,,%)B; (%, %)

by

B,(%,X,)

B, (x,%,)

r(x,%)

Fig. 1. Schematic of plate deformation.
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subject to the requirement that B, is coincident with b; when the structure is undeformed. The direction co-
sines matrix C(xy, x,) represents the possible arbitrary rotation between B; and b;. Now, the position vector
R can be represented as

~

R(x1,x2,x3) = R(x1,x2) + x3B35 + w; (1, x2,x3)B; (4)

where w; are the warping functions of the normal-line element which are treated as unknown 3-D functions
to be solved for later. To ensure a one-to-one mapping between R and (R, B;, w;), we need to introduce six
constraints by choosing appropriate definitions of R and B;. One can define R as

IR = (R) — ¢; (5
which means the warping functions satisfy the following constraints:
<W,-(X1,x2,)€3)> =G (6)

where ¢; are arbitrary functions of the in-plane coordinates x, introduced for the convenience of construc-
tion of an optimal Reissner—Mindlin model.

We are free to choose B; as the normal to the reference plane of the deformed plate to introduce addi-
tional two constraints. It should be noted that this is a convenient choice and has nothing to do with the
Kirchhoff hypothesis. In the Kirchhoff hypothesis, no local deformation of the transverse normal is al-
lowed. However, according to the present scheme we allow all possible deformation by (a) classifying all
deformation other than that of classical plate theory as warping, (b) assuming that the strain is small,
and (c) requiring that the relative rotation of a differential element of the transverse normal caused by warp-
ing is of the order of the strain.

Another constraint is introduced by rotating the set of B, such that

B,-R, =B, R, ()

So far, a total of six constraints have been introduced. The arbitrariness of ¢; means there is a family of
asymptotical theories. These constants will be determined by seeking the “best” Reissner—-Mindlin model
from the above family so that the loss of accuracy is minimized. Once ¢; are determined, the warping func-
tions will be uniquely determined and the 3-D variables will be uniquely expressed in terms of the 2-D vari-
ables and warping functions as shown in Eq. (4).

Based on the concept of decomposition of rotation tensor, Danielson (1991), the 3-D strains for small
local rotation are

1
Ly =5 Fy+F) =0y (8)
where Fj; are the mixed-basis components of the deformation gradient tensor such that
F;=B;-Gg"-b, )

with Gy as the covariant basis vector of the deformed configuration and g* the contravariant base vector of
the undeformed configuration. It is obvious that g = g, = b;. One can obtain G, with the help of the def-
inition of so-called generalized 2-D strains (see Hodges et al., 1993), given by

R,a = Baz + gab’B/i (10)
B, = (—K,4Bg x B; + K,3B;3) x B, (11)

where ¢,5 and K, are the 2-D generalized strains and (), = a}f—) From Eq. (10), one can find out that the
meaning of the sixth constraint in Eq. (7) is to choose ¢;; = €.
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With the assumption that the strain is small compared to unity, which has the effect of removing all the
terms that are products of the warping and the generalized strains, one can express the 3-D strain field as

I'. =€+ x3K +11WH<1 +12WH72
ZFS = Wh -+ e|ws -+ w3 (12)
Fl == Wg

where () =2 ()= ()2)" and

x3
Ie=|I'y 2Iy I';p)' 2= |2I's 2I]" Ti=Ty
e=len 2en 822JT k=|Kn Kp+Ky KzzJT

1 0 017 0 1 01" 1 0
I, = I, = €1 = € =
01 0 0 0 1 0 1

Now, the strain energy of the plate per unit area (which is the same as the strain energy for the defor-
mation of the normal-line element) can be written as
T

(13)

. I, De  Des  De I,
U:2< 27 DL Dy Dy |{ 2l > (14)
I, Dl DI D I,

where D, Do, Det, Ds, Dy and Dy are the appropriate partition matrices of the original 3-D 6 x 6 material
matrix. It is noted that the material matrix should be expressed in the global coordinates system x; and is in
general fully populated. However, if it is desired to model laminated composite plates in which each lamina
exhibits a monoclinic symmetry about its own mid-plane and is rotated about the local normal to be a layer
in the composite laminated plate, then Do and Dy will always vanish no matter what the layup angle is.
Considering this, we can simplify the strain energy expression to the form

2U = (I'IDT e + 2I'' DI+ 2I'' D21 + ' D, T,) (15)

To deal with applied loads, we will at first leave open the existence of a potential energy and develop
instead the virtual work of the applied loads. The virtual displacement is taken as the Lagrangean variation
of the displacement field, such that

SR = 5g,B; + x3B; + dw;B; + w;3B,; (16)
where the virtual displacement and rotation are defined as
5_%1' =ou-B; 0B, = (_WB/?B/? x By +WBSB3) x B; (17)

Since both the strain and the warping are small, one may safely ignore products of the warping and the
loading in the virtual rotation term. Then, the virtual work done by the applied loads 7;B; at the top surface,
fBB; at the bottom surface, and body force ¢;B; through the thickness is

S = (x4 B, (6885 + T |2 (52— ) (s, | + 3w+ B+ () (13)

where 7, f; and ¢, are taken to be independent of the warping functions, ()" =( )|x3:g, and
() =0l,= —2% By introducing column matrices 8¢, 8y, 7, §, and ¢, which are formed by stacking
the three elements associated with indexed symbols of the same names, one may write the virtual work

in a matrix form, so that

W =3q f+y m+ S(<"wh 4+ BTw + (9" w)) (19)
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where
f=1+B+{¢)
g(fl - ﬁl) + <x3¢1>
m=<h (20)

E(Tz = By) + (x3hy)
0

The complete statement of the problem can now be presented in terms of the principle of virtual work,
such that

SU — W =0 (21)

This is the variational statement of the original 3-D geometrically nonlinear problem with 3¢, i, and dw as
the variables. For construction of a reduced model with 8¢ and &y as the variables, we consider them as
fixed and only the warping function could be varied. In spite of the possibility of accounting for noncon-
servative forces in the above variational statement, we can assume the dependence of 7, 5, and ¢ on the
warping functions are negligible to render the problem governing the warping functions conservative. Thus,
one can pose the problem that governs the warping as the minimization of a total potential functional

3T =0 with IT=U—1t"w"—p"w —(¢"w) (22)

in which only the warping functions are varied, subject to the constraints Eq. (6). Up to this point, this is
simply an alternative formulation of the original 3-D elasticity problem. If we attempt to solve this problem
directly, we will meet the same difficulty as solving any full 3-D elasticity problem. Fortunately, as shown
below, VAM can be used to calculate the 3-D unknown warping functions asymptotically.

3. Dimensional reduction

To rigorously reduce the original 3-D problem to a 2-D plate problem, one must attempt to reproduce
the energy stored in the 3-D structure in a 2-D formulation. This dimensional reduction can only be done
approximately, and one way to do it is by taking advantage of the smallness of //I. As mentioned previ-
ously, although the reduced models based on ad hoc kinematic assumptions regularly appear in the liter-
ature, there is no rigorous justification for such assumptions. Rather, in this work, VAM will be used to
mathematically perform a dimensional reduction of the 3-D problem to a series of 2-D models. To proceed
by this method, one has to assess and keep track of the order of all the quantities in the formulation. Fol-
lowing Sutyrin (1997), the quantities of interest have the following orders:

e~hk~d fy~ pu(h/1)’s
fo~ (/DS my ~ ph(h/1)d

where 0 is the order of the maximum strain in the plate and u is the order of the material constants (all of
which are assumed to be of the same order).

Having assessed the orders of quantities of interest, we can use VAM to mathematically perform the
dimensional reduction. Instead of following the scheme used in the previous work by the writer and his
co-workers (Yu et al., 2002, 2003; Yu and Hodges, 2004), here we choose to follow the original application
of VAM in Berdichevsky (1979). The total potential energy can be expressed explicitly in terms of the 2-D
variables and warping functions as

(23)
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21T = (e + x3x + I“WHJX)TDe(e +x3 + Lpwyp)) + 2((€ + x3 + I“WHA,%)TDe[w/3 + wiDw})
+ (W) + e“wM)TDS(Wi‘ +epwsg) — 20" w) — 2¢Twt — 287w (24)
According to the asymptotical analysis and Eq. (23), we known
(IaWH‘a)TDe][;WH_ﬁ < WhTDSW‘/l
(eawM)TDse/;wlﬁ < Wy D, (25)
Ty ~ fawy ~ Pyws < (e —|—x3lc)TDelw'3

The orders of (IOLWHJC)TDetw’3 and wflTDse“w,g,a are unknown at this point, and we will discard them first as
suggested in Berdichevsky (1979). Then the energy functional can be simplified by retaining only the leading
terms so that:

20T = <(e + x3;c)TDe(e +x3K) + 2(e + x3;c)TDelwa11>

+ 2<(e + x31<)TDetw/3 + wiDw; + W’HTDSW'H> — 2<(]SWWH> — 2IWWW = 2B wy (26)
In the above functional, ws is decoupled from w) and can be solved separately, such that
wy = (D, +L3)& (27)
where

D, =|Dy,y Di| &=le k| Li&=c3/h 08)
Dy =—Dg/Di D'y =—x3Dg/D; (D.y) =0

Note that inter-lamina continuity of D, , must be maintained due to the continuity of warping functions to
produce a continuous displacement field. L3 contains six constants to be determined later. We know from
Eq. (27) that ws ~ hd, which means the previously discarded terms (1 awH‘“)TDetwg and wi‘TDseawM are of the
same order as (e + x3K)TDeI,,wH,1 and they should be retained for the calculation of w;. Whether they should
be kept for the calculation of w3 can only be ascertained after we have found wj. The energy functional
including the leading terms to solve wy is

201 = <(6 + )C3K)TDH (6 + X3K) + 2(6 + X3K)TDH[1W|W>

+ <(wi‘ + eocw;;.(x)TDs(w'H +ewsy) — 2(}5?‘-W”>
— ZTWWW — Zﬁﬁwi — 2(p3w3) — 213w5 — 2[B3w3 (29)
where wj is known from Eq. (27), and D = D, — D DY /D,. To carry out the variations of the functional,

one should be aware that w may be different functions for each layer. The continuity conditions on the
interfaces can be derived following calculus of variations as:

W] =0 [Ds(w| +ews,)] =0 on & (30)
where Q; denote the interfaces between the ith layer and i + 1th layer fori=1... N — 1 with N as the total

number of layers and the bracket [-] denotes the jump of the enclosed argument on the interface. The Euler
equations and the remaining conditions are:

(DSW’H + Dsemww)/ = C;g,a + g’ + }LH
(Dsw + Dse,ws,) " =1 (31)
(Dsw| + Dse,ws )~ = =B,
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where C, = —I] | D) x;Dy ], g = - ¢, and A are Lagrange multipliers to enforce the constraints applied on
the warping functions, Eq. (6). The inter-lamina continuity on C, and g are maintained to take advantage
of the second condition in Eq. (30). We also let (C}) =0 and (g) = 0 to eliminate all the integration con-
stants for convenience of future calculation. Integration by parts with respect to the in-plane coordinates is
used here and hereafter, whenever it is convenient for the derivation, since the goal is to obtain an interior
solution for the plate without consideration of edge effects.

Solving the equations in (31) along with (6), one obtains the following warping functions:

WH = (E(x + La — X3€&L3)éd’d =+ g (32)
with
C,=p;'C; (C)=0 g=D;'g @ =0 L&,=cy/h
* X3 1 +
C“—Cu+;C§_§Co‘ —DsemDL (33)

« X3 1 X3 1 X3 1
g =gt 8 —Egi + (g+§>f| + (;—§>ﬁ|
where the notation ()*=()"+ ()" and ()¥=()" —()". The order of w) is (h/)3, which means
(I awu,a)TDelwg and Wi‘TDSe,_wM_ are much smaller than w,D,w/ and discarding these two terms will not affect
the calculation of ws.
Now we have all the information needed to obtain the total energy that is asymptotically correct through
the order of u(//1)*6> which is sufficient for construction of a Reissner—Mindlin model, viz.,

201, = 6TAE + E\BE | + 26\ CEL+ ESDE, — 26" F (34)
where
B— <D3.HDIDL +ClC+ CTTelDL> —2L7CT +2LTCTE,

C

| — .
<DmD{Dl +5 (C/C,+CCy+ CTesD, + D{efc;)> —LICT — CT'Ly + Le[Ey + ElesLs

D= <DSZZDIDL + G0+ C;TezDL> —2L1CE + 217N E,
F=uD"+ D" + (¢3D]) + Ly (v3 + f5 + (h3))

1 * — —T —+T —-T
3 (<D£ezgﬂ +C, 8a Cu¢|\~a> -G, 1u.—C, ﬁu,x)

— Ly (v + B + &%) + ngez(Tua —Ba— )
[ D) (sDy) 3 )
= {<X3D> <X§D>] EBa = LxDy) D)) (35)

Eq. (34) is an energy functional expressed in terms of 2-D variables which can approximate the original 3-D
energy asymptotically. It is noted that quadratic terms associated with the applied loads are dropped
because they cannot be varied in the 2-D plate model.

4. Transforming into Reissner—Mindlin model

Although Eq. (34) is asymptotically correct through the second order and straightforward use of this
strain energy is possible, it involves more complicated boundary conditions than necessary since it contains
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derivatives of the generalized strain measures. To obtain an energy functional that is of practical use, one
can transform Eq. (34) into a Reissner—-Mindlin model. In a Reissner—-Mindlin model, there are two addi-
tional degrees of freedom, which are the transverse shear strains incorporated into the rotation of trans-
verse normal. We introduce another triad B; for the deformed plate, so that the definition of 2-D strains

becomes
R, =B, +¢,B; +2),;B; (36)
Bj."a = (—KzﬁB}; x B} +K;B;) x B}

where the transverse shear strains are y = |2y;3 2y23JT. Since B; is uniquely determined by B, and 7, one
can derive the following kinematic identity between the strains measures # of Reissner—-Mindlin plate
and &

E=R— Dy, (37)
where

[0 0010 OT
g, =

00 0O0T1 0

00001 071" (38)
Gy =

0000 0 1

# =& 26, &, K Kjp+K5 KEzJT
Now one can express the strain energy, asymptotically correct to the second order, in terms of strains of the
Reissner—Mindlin model as

21y = RAR = 2R AD 1y, — 2R AD) 5 + R\ BR ) + 2R\ CR >+ RDR, — 2R F (39)
The generalized Reissner—Mindlin model is of the form

2M1y = R AR + "Gy — 2R"F , — 2y"F, (40)

To find an equivalent Reissner—Mindlin model Eq. (40) for Eq. (39), one has to eliminate all partial
derivatives of the strain. Here equilibrium equations are used to achieve this purpose. From the two equi-
librium equations balancing bending moments, one can obtain the following formula

Gy—F, =9 4R, + { " } (41)
my

where F 4, is dropped because they are high order terms. Substituting Eq. (41) into Eq. (39), one can show
that 4 = F and F, = 0. Finally one can rewrite Eq. (39) as

201, = RTAR + "Gy — 2#"F + U” (42)
where

U= R\BR) +2R,C Ry + RDR 5 (43)
and

B=B+A92,G'%{4

C=C+49,G 24 (44)

D =D+ A4%,G"' 9,4
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If we can drive U* to be zero for any %, then we have found an asymptotically correct Reissner—Mindlin
plate model. For general anisotropic plates, this term will not be zero; but we can minimize the error to
obtain a Reissner—-Mindlin model that is as close to asymptotical correctness as possible. The accuracy
of the Reissner-Mindlin model depends on how close to zero one can drive this term. In other words,
one needs to seek an optimal set of the 33 unknowns (G contains 3 unknowns, L; contains 6 unknowns,
and L, contain 24 unknowns) so that the value of the quadratic form in Eq. (43) is as close to be zero
as possible for arbitrary generalized strain measures. Previously, we let the distinct 78 terms in the symmet-
ric 12 x 12 coeflicient matrix equal to zeros to formulate 78 equations. It is a linear system with 33 un-
knowns. Then we used the least square technique to solve the overdetermined system for the constants
as done in Yu et al. (2002). Mathematically, it requires us to minimize the maximum absolute of the eigen-
values of the 12 x 12 coefficient matrix. Such a minimization problem can be written as a semi-definite pro-
gramming (SDP) problem, Toh et al. (1999). The derivation requires some knowledge of advanced matrix
analysis like Schur complement theorem. Therefore, the present work will use SDP to carry out the
minimization of loss of energy. After driving of U* to be close to zero, we found the “best”, from the
asymptotic point of view, Reissner—-Mindlin model to be used for 2-D plate analysis

201, = RTAR +7'Gy — 2R'F (45)

with 4, G, F capturing the material and geometric information eliminated in the reduced 2-D plate analysis.
It is worthy to emphasize that although the 2-D constitutive model is constructed in a way dramatically
different from traditional Reissner—Mindlin models, the plate analysis remains the same including the gov-
erning equations and essential and natural boundary conditions as long as the strain measures are defined
equivalently as in Eq. (36).

5. Recovery relations

From the above, we have obtained a Reissner—Mindlin model for composite plates which is as close as
possible to being asymptotically correct in the sense of matching the total energy. One can use this model to
carry out various analyses (for example, static, dynamic, buckling, and aeroelastic) for composite plates. In
many applications, however, while it is necessary to accurately calculate the 2-D displacement field of com-
posite plates, this is not sufficient. Ultimately, the fidelity of a reduced-order model such as this depends on
how well it can predict the 3-D results in the original 3-D structure. Hence recovery relations should be
provided to complete the theory so that the results can be compared with those of the original 3-D model.
By recovery relations, then, we mean expressions for 3-D displacement, strain, and stress fields in terms of
2-D quantities and xs.

For an energy that is asymptotically correct through the second order, we can recover the 3-D displace-
ment, strain, and stress fields only through the first order in a strict sense of asymptotical correctness. Using
Egs. (1), (3) and (4), one can recover the 3-D displacement field through the first order as

Ui = u; +x3C3 + Cjw; (46)
where U, u; are the 3-D displacements and plate displacements, respectively, expressed in b;. And from Eq.
(12), one can recover the 3-D strain field through the first order as

I'. =€+ x3K ZFS:wh—i—eawM I'i=wj (47)

One can use the 3-D constitutive law to obtain 3-D stresses ¢;;. Since we have obtained an optimum shear
stiffness matrix G, the recovered 3-D results through the first order are better than CLT and conventional
first-order shear-deformation theory (FOSDT). However, according to the present approach, the transverse
normal stress (033) is a second-order quantity and not available in the first approximation. Despite that it is
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usually much smaller than other components, a33 is a very critical component for some failures such as
debonding or delamination. In order to obtain a reasonable recovery for the transverse normal stress,
VAM needs to be applied one more time to find the warping functions of the order of (4//)*5. Using the
same procedure listed in previous section, the second-order warping function y; can be obtained through
the following equations

(Do + DX Lwy ) + e/Tst(w’H +eawss) p+ by =43
(D + Dedowy )" = 13

(DtJ’z + Delow)s)” = B

[ws] = [D,y3—|—D1wHa]—O on Q;

(48)

where /; is the Lagrange multiplier to enforce the constraint (y3;) = 0, which is a convenient choice in com-
parison to Eq. (6). We have obtained an energy asymptotical correct up to the order of u(h/I)*6* by finding
3. Such an energy is way too complex to be used in practice. Therefore, we still use the previous Reissner—
Mindlin model to carry out the 2-D plate analysis and consider the 2-D variables as an approximation to
those calculated by the fourth-order energy.

Finally, we can write the 3-D recovery relations for displacement through the second order as

Ui = u; +x3C3; + Cjiw; + C3;y; (49)
and the strains through the second order as

e =e+xsx+ 1w, 2I% :wh +ews, I'i=w,+), (50)
Again the stresses through the second order can be obtained from use of the 3-D material law, such that

6. = |01 o1 o» JT = Dj(e + x3x) + Doy + Del w4

o, = oy onl = D(w) + e,ws ) (51)

0. = 033 = DL 1,w|, + Dy
Before demonstrating the accuracy of the present theory using numerical examples, it is interesting to check
the behavior of recovered fields. It is obvious that 3-D displacement fields recovered using Eq. (49) is con-
tinuous on the interface of difference layers because the warping functions are continuous on the interfaces.
One can also conclude that the recovered 3-D transverse shear and normal stresses from Eq. (51) are also
continuous due to the continuous conditions in Egs. (30) and (48). Furthermore, these components, o3,
exactly satisfy the traction boundary conditions on the top and bottom surfaces because such conditions
are directly utilized to find the solution, as shown in Egs. (31) and (48). It is of interest to check whether

the recovered 3-D stresses satisfy the 3-D equilibrium equations. Here we use the static equilibrium from
the 3-D elasticity theory:

0ij+ ¢ =0 (52)

Plugging the recovered stresses in Eq. (51) into the above equilibrium equations and dropping terms higher
than the second order, one obtains

/ ! T B
Ds(w” + eaWS,a):I + IQD”(e,a +x3K,) + qﬁ” =0 5

(DY + DLLw ) + eIT;DS(W’H +eawsy) s+ ¢y =0

In view of the Euler equations in Egs. (31) and (48), if 4) and /3 vanish, Eq. (53) will be automatically sat-
isfied, which means the recovered stresses can satisfy the 3-D equilibrium asymptotically up to the second
order. Integrating Euler equation for w) through the thickness, we get
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LDy (D) 6o+ fi = hiy (54)

Comparing it with the 2-D equilibrium equations derived from the Reissner—-Mindlin model in Eq. (45),
such as the linearized first two equations in Egs. (60) of Hodges et al. (1993), one can show that 4 indeed
vanish because the membrane stress resultants are defined as

[Nt N2 Noo| " = [(D)) (xsD)) | &6 (55)

Therefore, we have proved that the first two 3-D equilibrium equations are satisfied asymptotically up to
the second order. Similarly, we can integrate the Euler equation for y; to obtain

eE<DS(wh + eaW3,a)>,ﬁ +/f3=his (56)
Only if the transverse shear stress resultants are defined as
101 Ox]" = (Dy(W] + exws,)) = (03) (57)

will 23 vanish due to the third equation of the 2-D equilibrium equation. However, the transverse shear
stress resultants are defined directly using Eq. (45), and we have no direct means to establish Eq. (57). Nev-
ertheless, one can reasonably argue that Eq. (57) should be satisfied approximately, not necessary asymp-
totically, because Eq. (45) is the “best” representation of the original 3-D energy due to o, and ¢ in a
Reissner—Mindlin model. Then we can safely state that the third 3-D equilibrium equation is satisfied in
the sense of minimizing the loss of energy between 3-D energy and the Reissner—-Mindlin model.

From above, we have shown analytically that: (a) the recovered 3-D displacements and stresses satisfy
the both displacement and traction continuity on the interfaces; (b) the recovered stresses satisfy traction
conditions on the top and bottom surfaces; and (c) the recovered 3-D stresses satisfy the first two equations
of 3-D equilibrium asymptotically up to the second order and the third equation in the sense of minimal
energy loss in a Reissner—Mindlin model. A complete set of such features are not found in the literature
on equivalent single-layer models and most of the higher order layer-wise models for composite plates.

6. Numerical examples

In this section we use a few simple examples to demonstrate the accuracy of the developed theory. The
plates we are going to study are made with composite material with the following properties

EL =25x10% psi Ep = 10° psi
Gir = 0.5 x 10° psi  Grp = 0.2 x 10° psi

VLT = V1T = 0.25

where L denotes the direction parallel to the fibers and T the transverse direction. The test problem is a
plate with width L = 4 in. along x (the “lateral” direction) and infinite length in the x, direction (the “lon-
gitudinal” direction). The thickness of the plate is 1 in., so that the aspect ratio L/h = 4. The plate is simply
supported and subjected to a sinusoidal pressure of the form

Po . X
3 =f= 50 sin (T) (58)
with 7, = f, = 0. A geometrically linear theory is used in order to compare the results with the available
exact solution in Pagano (1970).
First, we investigate a laminated composite plate with lay-up [15°/—15°]. The recovered stresses normal-
ized by pg are plotted in Figs. 2-7, where the solid line represents the results from the exact solution of
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Fig. 2. Distribution of o vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.
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Fig. 3. Distribution of o, vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.
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Fig. 4. Distribution of ¢,, vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.

Pagano (1970), dots from the present theory, dashed line from FOSDT, and long-dash/short-dash line from
CLT. Note that, because the 2-D variables are either sine or cosine functions of x;, g,5 and o33 are plotted
for the position x; = L/2, and o,3 are plotted for the position x; =0 or x; = L. From the plots, one can
observe that the present theory has an excellent agreement with the 3-D exact solution and produces much
better results than CLT and FOSDT, especially for the transverse shear and transverse normal stresses.
From the plots, one can also observe that the continuity conditions on the interface and traction conditions
on the bottom and top surfaces are satisfied exactly.
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Fig. 5. Distribution of a3 vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.
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Fig. 6. Distribution of a3 vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.
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Fig. 7. Distribution of o33 vs the thickness coordinate ([15°/—15°]). Solid line: exact solution; dots: VAPAS; dashed line: FOSDT;
long-dash/short-dash line: CLT.

Next, we take another composite laminate with lay-up [30°/—30°/—30°/30°]. The results are shown in
Figs. 8-13. The power of present theory is clearly exemplified by the excellent agreement with exact 3-D
solutions. Indeed, even though there are more layers in this example, the agreement is still excellent. Recall
that the recovery relations use results from a standard Reissner—-Mindlin plate model. The large number of
degrees of freedom in the layer-wise models depends on the number of layers and is unnecessary to achieve
the level of accuracy shown here.

Lastly, we study a more realistic example with 20 layers with the stacking sequence as [30°/—30°/—30°/
30°]s. The stresses are shown in Figs. 14-19. As one can observe from the results, even for this case, the
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Fig. 8. Distribution of o, vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

In-Plane Shear Stress

-0.4 -0.2 0 0.2 0.4
Normalized Thickness Coordinate

Fig. 9. Distribution of ¢, vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 10. Distribution of a5, vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

present theory agrees with exact solution very well. This clearly proves that one can use the present theory
to model laminated plates confidently to get great accuracy with much less computational effort.

For all the simple cylindrical bending problems we have tested, the results of the present theory are al-
most identical to that of Yu et al. (2002). However, we believe that present model is more robust and should
yield better results for more realistic cases. Such a comparison will require extensive work and is planned
for the near future. Furthermore, the present theory has its own academic merit in comparison to that of
Yu et al. (2002) because it rigorously and consistently introduces the constants from the very beginning
while the previous model introduced the constants as a remedy at the point when it was found out that
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Fig. 11. Distribution of 4,3 vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 12. Distribution of g,3 vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

0.4

0.2

Transverse Normal Stress
o

-0.4 -0.2 0 0.2 0.4
Normalized Thickness Coordinate

Fig. 13. Distribution of ¢33 vs the thickness coordinate ([30°/—30°/—30°/30°]). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

the minimization problem is too rigid. Hence, the present derivation can be viewed as an analytical justi-
fication of Yu et al. (2002).

Mathematically, the accuracy of the present theory should be comparable to that of a layer-wise plate
theory with assumed in-plane displacements as layer-wise cubic polynomials of the thickness direction
and transverse displacement as a layer-wise fourth-order polynomial. The computational cost of the present
theory includes both the time of through-the-thickness analysis used by VAPAS and the time of a plate
analysis used by a generic 2D plate solver. VAPAS takes a little bit longer than the time used in FOSDT
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Fig. 14. Distribution of ¢, vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 15. Distribution of o}, vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 16. Distribution of ¢, vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

for integration through the thickness. However, one only needs to run VAPAS once for the areas of the
plate which has the same through-the-thickness information. The computation time used by VAPAS is al-
most negligible comparing to the large amount of time used in the plate analysis. Hence, the computational
requirement of the present theory is almost the same as FOSDT and much less than layer-wise theories.
Moreover, it is not necessary to use integration of the 3-D equilibrium equations through the thickness
to get the transverse shear and normal stress results presented herein.
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Fig. 17. Distribution of a3 vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 18. Distribution of a,3 vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.
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Fig. 19. Distribution of ¢33 vs the thickness coordinate ([30°/—30°/—30°/30°]s). Solid line: exact solution; dots: VAPAS; dashed line:
FOSDT; long-dash/short-dash line: CLT.

7. Conclusion

The variational-asymptotic method, a powerful mathematical approach, has been used to construct a
highly accurate Reissner—-Mindlin plate theory for composite laminated plates. The theory is applicable
to plates for which each layer is made with a monoclinic material. Although the resulting plate theory is
as simple as a single-layer FOSDT, the recovered 3-D displacement, strain, and stress results have excellent
accuracy, comparable to that of higher-order, layer-wise plate theories that have many more degrees of
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freedom. The present paper has built on the writer’s previous work in Yu et al. (2002) with the following
new contributions:

1. The present work allows the maximum freedom (33 constants in total) to seek the optimal Reissner—
Mindlin model.

2. The present work adopts the semi-definite programming technique to carry out the optimization.

3. The present work proves the first time that: (a) the recovered 3-D displacements and stresses satisfy the
continuity conditions on the interface of different layers; (b) the recovered 3-D stresses satisfy the trac-
tion conditions on the bottom and top surfaces; and (c) the recovered 3-D stresses satisfy the first two
equilibrium equations asymptotically and satisfy the third equation approximately in the sense of
minimal energy loss.

Since all the formulas are given in an explicit analytical form, it is easy to implement the present
theory using a symbolic manipulator such as Mathematica™ or Maple™. However, for the ultimate goal
to use this theory with general 2-D plate solvers, the present theory is incorporated into the computer pro-
gram VAPAS (variational-asymptotic plate and shell analysis). It is a 1-D finite element code which exe-
cutes very rapidly, enabling this high-fidelity model to be cheaply included in standard plate finite
element codes.
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